Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Bioorg Chem ; 117: 105466, 2021 12.
Article in English | MEDLINE | ID: covidwho-1499653

ABSTRACT

Series of piperidone-salicylate conjugates were synthesized through the reaction of 3E,5E-bis(arylidene)-4-piperidones with the appropriate acid chloride of acetylsalicylate in the presence of triethylamine. All the synthesized conjugates reveal antiproliferative properties against A431 (squamous skin) cancer cell line with potency higher than that of 5-fluorouracil. Many of the synthesized agents also exhibit promising antiproliferative properties against HCT116 (colon) cancer cell line, of which 5o and 5c are the most effective with 12.9, 9.8 folds potency compared with Sunitinib. Promising activity is also shown against MCF7 (breast) cancer cell line with 1.19, 1.12 folds relative to 5-fluorouracil. PI-flow cytometry of compound 5c supports the arrest of cell cycle at G1-phase. However, compound 5o and Sunitinib arrest the cell cycle at S-phase. The synthesized conjugates can be considered as multi-targeted tyrosine kinase inhibitors due to the promising properties against VEGFR-2 and EGFR in MCF7 and HCT116. CDOCKER studies support the EGFR inhibitory properties. Compounds 5p and 5i possessing thienylidene heterocycle are anti-SARS-CoV-2 with high therapeutic indices. Many of the synthesized agents show enhanced COX-1/2 properties than aspirin with better selectivity index towards COX-2 relative to COX-1. The possible applicability of the potent candidates discovered as antitumor and anti-SARS-CoV-2 is supported by the safe profile against normal (non-cancer, RPE1 and VERO-E6) cells.


Subject(s)
Antineoplastic Agents/chemistry , Antiviral Agents/chemistry , Aspirin/chemistry , Curcumin/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/pathology , COVID-19/virology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclooxygenase 1/chemistry , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Drug Design , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism
2.
Biomed Pharmacother ; 144: 112260, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1446462

ABSTRACT

Abnormal structural and molecular changes in malignant tissues were thoroughly investigated and utilized to target tumor cells, hence rescuing normal healthy tissues and lowering the unwanted side effects as non-specific cytotoxicity. Various ligands for cancer cell specific markers have been uncovered and inspected for directional delivery of the anti-cancer drug to the tumor site, in addition to diagnostic applications. Over the past few decades research related to the ligand targeted therapy (LTT) increased tremendously aiming to treat various pathologies, mainly cancers with well exclusive markers. Malignant tumors are known to induce elevated levels of a variety of proteins and peptides known as cancer "markers" as certain antigens (e.g., Prostate specific membrane antigen "PSMA", carcinoembryonic antigen "CEA"), receptors (folate receptor, somatostatin receptor), integrins (Integrin αvß3) and cluster of differentiation molecules (CD13). The choice of an appropriate marker to be targeted and the design of effective ligand-drug conjugate all has to be carefully selected to generate the required therapeutic effect. Moreover, since some tumors express aberrantly high levels of more than one marker, some approaches investigated targeting cancer cells with more than one ligand (dual or multi targeting). We aim in this review to report an update on the cancer-specific receptors and the vehicles to deliver cytotoxic drugs, including recent advancements on nano delivery systems and their implementation in targeted cancer therapy. We will discuss the advantages and limitations facing this approach and possible solutions to mitigate these obstacles. To achieve the said aim a literature search in electronic data bases (PubMed and others) using keywords "Cancer specific receptors, cancer specific antibody, tumor specific peptide carriers, cancer overexpressed proteins, gold nanotechnology and gold nanoparticles in cancer treatment" was carried out.


Subject(s)
Antineoplastic Agents/administration & dosage , Cancer Vaccines/therapeutic use , Drug Carriers , Drug Resistance, Neoplasm , Genetic Therapy , Neoplasms/therapy , Precision Medicine , Animals , Antineoplastic Agents/metabolism , CRISPR-Cas Systems , Cancer Vaccines/adverse effects , Drug Compounding , Drug Resistance, Neoplasm/genetics , Humans , Molecular Targeted Therapy , Nanoparticles , Nanotechnology , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/immunology
3.
Inorg Chem ; 59(23): 17109-17122, 2020 Dec 07.
Article in English | MEDLINE | ID: covidwho-1387106

ABSTRACT

Metal complexes have numerous applications in the current era, particularly in the field of pharmaceutical chemistry and catalysis. A novel synthetic approach for the same is always a beneficial addition to the literature. Henceforth, for the first time, we report the formation of three new Pd(II) complexes through the Michael addition pathway. Three chromone-based thiosemicarbazone ligands (SVSL1-SVSL3) and Pd(II) complexes (1-3) were synthesized and characterized by analytical and spectroscopic tools. The Michael addition pathway for the formation of complexes was confirmed by spectroscopic studies. Distorted square planar structure of complex 2 was confirmed by single-crystal X-ray diffraction. Complexes 1-3 were subjected to DNA- and BSA-binding studies. The complex with cyclohexyl substituent on the terminal N of thiosemicarbazone (3) showed the highest binding efficacy toward these biomolecules, which was further understood through molecular docking studies. The anticancer potential of these complexes was studied preliminarily by using MTT assay in cancer and normal cell lines along with the benchmark drugs (cisplatin, carboplatin, and gemcitabine). It was found that complex 3 was highly toxic toward MDA-MB-231 and AsPC-1 cancer cells with IC50 values of 0.5 and 0.9 µM, respectively, and was more efficient than the standard drugs. The programmed cell death mechanism of the complexes in MDA-MB-231 cancer cells was confirmed. Furthermore, the complexes induced apoptosis via ROS-mediated mitochondrial signaling pathway. Conveniently, all the complexes showed less toxicity (≥50 µM) against MCF-10a normal cell line. Molecular docking studies were performed with VEGFR2, EGFR, and SARS-CoV-2 main protease to illustrate the binding efficiency of the complexes with these receptors. To our surprise, binding potential of the complexes with SARS-CoV-2 main protease was higher than that with chloroquine and hydroxychloroquine.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Coordination Complexes/pharmacology , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , SARS-CoV-2/enzymology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Chromones/chemical synthesis , Chromones/metabolism , Chromones/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Coronavirus 3C Proteases/metabolism , DNA/metabolism , Drug Screening Assays, Antitumor , ErbB Receptors/metabolism , Humans , Intercalating Agents/chemical synthesis , Intercalating Agents/metabolism , Intercalating Agents/pharmacology , Ligands , Molecular Docking Simulation , Palladium/chemistry , Protein Binding , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/metabolism , Thiosemicarbazones/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Biomed Pharmacother ; 141: 111888, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1293595

ABSTRACT

Curcumin, isolated from Curcuma longa L., is a fat-soluble natural compound that can be obtained from ginger plant tuber roots, which accumulative evidences have demonstrated that it can resist viral and microbial infection and has anti-tumor, reduction of blood lipid and blood glucose, antioxidant and removal of free radicals, and is active against numerous disorders various chronic diseases including cardiovascular, pulmonary, neurological and autoimmune diseases. In this article is highlighted the recent evidence of curcuminoids applied in sevral aspects of medical problem particular in COVID-19 pandemics. We have searched several literature databases including MEDLINE (PubMed), EMBASE, the Web of Science, Cochrane Library, Google Scholar, and the ClinicalTrials.gov website via using curcumin and medicinal properties as a keyword. All studies published from the time when the database was established to May 2021 was retrieved. This review article summarizes the growing confirmation for the mechanisms related to curcumin's physiological and pharmacological effects with related target proteins interaction via molecular docking. The purpose is to provide deeper insight and understandings of curcumin's medicinal value in the discovery and development of new drugs. Curcumin could be used in the prevention or therapy of cardiovascular disease, respiratory diseases, cancer, neurodegeneration, infection, and inflammation based on cellular biochemical, physiological regulation, infection suppression and immunomodulation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antineoplastic Agents/therapeutic use , Antioxidants/therapeutic use , Curcumin/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Curcumin/metabolism , Curcumin/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Structure, Secondary
5.
Eur J Med Chem ; 215: 113267, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1111592

ABSTRACT

Inhibitors of the proteasome have been extensively studied for their applications in the treatment of human diseases such as hematologic malignancies, autoimmune disorders, and viral infections. Many of the proteasome inhibitors reported in the literature target the non-primed site of proteasome's substrate binding pocket. In this study, we designed, synthesized and characterized a series of novel α-keto phenylamide derivatives aimed at both the primed and non-primed sites of the proteasome. In these derivatives, different substituted phenyl groups at the head group targeting the primed site were incorporated in order to investigate their structure-activity relationship and optimize the potency of α-keto phenylamides. In addition, the biological effects of modifications at the cap moiety, P1, P2 and P3 side chain positions were explored. Many derivatives displayed highly potent biological activities in proteasome inhibition and anticancer activity against a panel of six cancer cell lines, which were further rationalized by molecular modeling analyses. Furthermore, a representative α-ketoamide derivative was tested and found to be active in inhibiting the cellular infection of SARS-CoV-2 which causes the COVID-19 pandemic. These results demonstrate that this new class of α-ketoamide derivatives are potent anticancer agents and provide experimental evidence of the anti-SARS-CoV-2 effect by one of them, thus suggesting a possible new lead to develop antiviral therapeutics for COVID-19.


Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Ketones/pharmacology , Proteasome Inhibitors/pharmacology , SARS-CoV-2/drug effects , Amides/chemical synthesis , Amides/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Calpain/chemistry , Calpain/metabolism , Cell Line, Tumor , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Screening Assays, Antitumor , Humans , Ketones/chemical synthesis , Ketones/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/metabolism , Protein Binding , Structure-Activity Relationship
6.
J Mol Model ; 26(12): 341, 2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-926723

ABSTRACT

HER-2 type breast cancer is one of the most aggressive malignancies found in women. Tucatinib is recently developed and approved as a potential medicine to fight this disease. In this manuscript, we present the gross structural features of this compound and its reactivity and wave function properties using computational simulations. Density functional theory was used to optimise the ground state geometry of the molecule and molecular docking was used to predict biological activity. As the electrons interact with electromagnetic radiations, electronic excitations between different energy levels are analysed in detail using time-dependent density functional theory. Various intermolecular and intermolecular interactions are analysed and reaction sites for attacking electrophiles and nucleophiles identified. Information entropy calculations show that the compound is inherently stable. Docking with COVID-19 proteins show docking score of - 9.42, - 8.93, - 8.45 and - 8.32 kcal/mol respectively indicating high interaction between the drug and proteins. Hence, this is an ideal candidate to study repurposing of existing drugs to combat the pandemic.


Subject(s)
Antineoplastic Agents/chemistry , Antiviral Agents/chemistry , Betacoronavirus/chemistry , Electrons , Oxazoles/chemistry , Protease Inhibitors/chemistry , Pyridines/chemistry , Quinazolines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antineoplastic Agents/metabolism , Antiviral Agents/metabolism , Betacoronavirus/enzymology , Binding Sites , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Repositioning , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxazoles/metabolism , Protease Inhibitors/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Pyridines/metabolism , Quantum Theory , Quinazolines/metabolism , SARS-CoV-2 , Thermodynamics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL